Computational earth science uses modelling to understand complex physical systems which cannot be directly observed. Over the last years, numerical modeling of earthquakes has provided new approaches to apprehend the physics of earthquake rupture and the seismic cycle, seismic wave propagation, fault zone evolution, and seismic hazard assessment. Recent advances in numerical algorithms and increasing computational power enable unforeseen precision and incorporation of multi-physics components in physics-based simulations of earthquake rupture and seismic wave propagation but also pose challenges in terms of fully exploiting modern supercomputing infrastructure, realistic parameterization of simulation ingredients, and the analysis of large synthetic datasets. Meanwhile, advances in laboratory experiments link earthquake source processes to rock mechanics.
This session brings together modelers and data analysts interested in the physics and computational aspects of earthquake phenomena and earthquake engineering. We welcome contributions spanning all aspects of seismic hazard assessment and earthquake physics - from slow slip events, fault mechanics and rupture dynamics, to wave propagation and ground motion analysis, to the seismic cycle and interseismic deformation and links to long-term tectonics and geodynamics - as well as studies advancing the state-of-the art in the related computational and numerical aspects.
Physics-based earthquake modeling and engineering
Co-organized by GD11/NH14/TS10
Convener:
Jean Paul Ampuero
|
Co-conveners:
Alice-Agnes Gabriel,
Elisa Zuccolo,
Ahmed Elbanna,
Liuwei Xu