Reliability in water research depends on two key aspects: the availability of robust observational data and the rigorous selection and validation of model frameworks. This session highlights the importance of data acquisition, quality control, and curation in supporting reliable methodologies across hydraulic and hydrologic engineering.
In hydraulics, flume experiments provide controlled, high-quality datasets but are resource-intensive and limited in scalability. Numerical modeling offers greater flexibility to simulate diverse flow conditions, yet its accuracy is highly sensitive to parameterization, boundary conditions, and discretization schemes. In hydrology, sparse and uncertain field data further complicate model calibration and validation.
Recent advances in artificial intelligence (AI) and machine learning (ML) allow researchers to analyze large and heterogeneous datasets. However, risks arise when dataset adequacy, representativeness, or validation are overlooked, leading to ambiguous outcomes. These issues intensify when experimental, numerical, and AI-driven approaches are not cross-validated or integrated, weakening robustness and transferability.
This session aims to strengthen understanding of data curation and model selection as critical, though often overlooked, components in solving water resource challenges. Topics of interest include:
1. Strategies for data acquisition, handling, and curation across laboratory, field, numerical, and AI/ML approaches.
2. Best practices in optimization, calibration, and hyper-parameterization to improve model performance.
3. Frameworks for integrating laboratory, field, and computational datasets for consistency and cross-validation.
4. Data curation methods that enhance efficiency, reproducibility, and reliability in modeling.
Through interdisciplinary dialogue, the session seeks to generate methodological insights and practical guidelines that enhance accuracy in data handling and model selection. The overarching goal is to advance high-quality, validated, and context-relevant outcomes that strengthen resilience and reliability in water research.
Data Curation and Model Selection: Strengthening Accuracy and Reliability in Hydraulic-, Hydrologic-, and AI-based Water Research Modelling
Co-organized by ESSI1/HS13/NP3