Studying materials and processes under extreme pressure-temperature conditions is central to understanding the interiors and evolution of Earth and Earth-like planets. Deep inside our planet, diverse physical and chemical phenomena, such as core–mantle differentiation, mantle plume origins, and enigmatic low-velocity regions, govern planetary structure and long-term evolution. Yet our direct observations—seismological, heat flux, gravity, and geomagnetic fields—leave many aspects of the deep Earth open to interpretation. Insights into mineral physics properties—such as equations of state, elasticity, texture, transport properties, phase transitions, melting, and chemical reactivity—are critical to constrain models of planetary interiors. In parallel, geodynamical modeling allows us to test hypotheses about these processes by making quantitative predictions that can be compared with observations. The scope of such studies now extends beyond Earth. Since the commissioning of the James Webb Space Telescope in 2022, exoplanet characterization has accelerated, particularly for rocky, potentially habitable planets.
Recent advances in experimental and computational techniques now allow access to an unprecedented range of conditions relevant to planetary interiors. Static compression experiments with diamond anvil cells reach pressures in the megabar regime, while dynamic compression with free-electron lasers enables ultrafast measurements at extreme conditions relevant to large exoplanets—opening unique opportunities to capture transformations of matter linked to planetary evolution. Complementary computational methods, from ab initio simulations to large-scale geodynamical models, provide key insights to predict the properties of matter at depth and link them to observable planetary parameters such as seismic velocities, mass–radius relationships, or interior dynamics.
This session invites contributions from across planetary sciences that advance our understanding of materials and processes under extreme conditions. We particularly welcome studies addressing mineral physics properties, interior structure and dynamics, and the chemical and physical evolution of Earth and exoplanets. Abstracts highlighting novel experimental techniques, innovative synchrotron and FEL approaches, and cutting-edge modeling methods can all come together to reveal the complex interplay of chemistry, physics, and dynamics within Earth and planetary interiors.
Rebecca Fischer