Fluid-rock interactions of ultramafic rocks in the subsurface have a substantial potential for large-scale CO2 storage by long-term mineralization, are a source of natural H2 resources, and play an important role in the formation of various critical ore deposits (e.g. Ni, Co). Understanding the underlying processes is therefore highly relevant for climate crisis mitigation and the energy transition. The coupled chemical, hydrological and mechanical feedbacks and the interplay between dynamic changes in pH, redox conditions and critical metal mobility during these interactions are not yet fully understood. We cordially invite contributions that advance our understanding of the conditions, mechanisms and rates of CO2 mineralization, H2 generation and element mobility during fluid-rock interactions in peridotites and serpentinites from microscopic to industrial and tectonic scales, including studies of natural analogues, field surveys, pilot injection sites, laboratory experiments and theoretical simulations.
Solicited authors:
Benjamin Malvoisin
Please decide on your access
Please use the buttons below to download the display or to visit the external website where the presentation is linked. Regarding the external link, please note that Copernicus Meetings cannot accept any liability for the content and the website you will visit.
You are going to open an external link to the asset as indicated by the session. Copernicus Meetings cannot accept any liability for the content and the website you will visit.
The session GMPV3.1 is running on a video chat platform. Please find the button to access.
GMPV3.1 takes place on an external platform. When opening the external link, please be aware that Copernicus Meetings cannot accept any liability for the content and the website you will visit.