Soil microorganisms are responsible for essential soil functions, including nutrient cycling, carbon transformation, and climate regulation. Their metabolism and growth rely on C and energy as well as nutrients (e.g., N and P) and electron acceptors (O2, NO3, etc. ... or C itself). After they die, the remaining necromass is further transformed or stabilized in soil organic matter. This session integrates experimental and modelling insights to elucidate the energy and matter flows driven by soil microbial metabolism, their dependency on environmental conditions, and the implications for soil functions.
We welcome submissions seeking to understand soil microbial metabolism, growth and death, encompassing the diverse transformations and interactions these involve. Topics of interest include characterization of microbial activity and turnover using advanced methods (e.g., isotope tracing, calorimetry, metagenomics), microbial ecophysiology and stoichiometry, physiological responses to (micro)environmental changes, carbon and energy-use efficiency, alongside approaches to understand microbial functional responses (e.g. dynamic modelling, artificial intelligence). We aim to stimulate interdisciplinary discussions to advance our understanding of soil biology at scales from the mechanistic understanding of biogeochemical processes to global change.
We are excited to have Prof. Michaela Dippold (University of Tübingen) as an invited speaker for the session.
Michaela A. Dippold