Direct anthropogenic perturbations of the P cycle, coupled with other human-induced stresses, is one of the biggest threats to global Earth functioning today. Widespread application of P fertilizers has changed the P cycle from relatively closed to a much more “leaky” cycle, with increased P losses to aquatic ecosystems, influencing their trophic state. Meanwhile, forest ecosystems may be losing their ability to recycle P efficiently, due to excessive N input, extensive biomass removal, and climatic stress. Throughout geological history, P availability has regulated biological productivity with impacts on the global carbon cycle. Climate change and its mitigation affect and will further alter global P cycles.
This interdisciplinary session invites contributions to the study of P from all disciplines, and aims to foster collaborations between researchers working on different aspects of the P cycle. We target a balanced session giving equal weight across the continuum of environments in the P cycle, from agriculture, forests, soils and groundwater, through lakes, rivers and estuaries, to oceans, marine sediments and geological P deposits. We welcome both empirical studies furthering process-level understanding of P cycling and modeling studies leveraging that knowledge to larger spatial scales.
Recent advances in phosphorus cycling: from micro to global scale
Co-organized by SSS5
Convener:
Julian HelfensteinECSECS
|
Co-conveners:
Nelly Sophie RaymondECSECS,
Tom Jilbert,
David O'Connell,
Sara Bauke