Continental collision is one of the most significant processes in lithospheric evolution, driving mountain building, crustal thickening, and the formation of supercontinents. Within the context of the Wilson cycle, continental collision follows a sequence of continental rifting, ocean spreading, and subduction. Early-stage rifting and the development of passive margins therefore precede the accretion of continental fragments and the collision of continental margins, leaving behind intricate structural and stratigraphic records that complicate tectonic interpretations in convergent settings. Similarly, the resulting fold-and-thrust belts and orogens feature important characteristics of structural, thermal, and chemical inheritance that may impact future rifting events. Present-day fold-and-thrust belts demonstrate considerable diversity in spatial extent, rift-related structures, rheological characteristics, syn- and post-orogenic sedimentation, and magmatic activity—all of which influence the dynamics of previous collision and future rifting episodes and the distribution of georesources.
Positive and negative inversion tectonics have been the subject of intensive study, aiming to understand how inherited geological features control both short- and long-term evolutionary trends. Yet, several key questions remain open: i) How do variations in sequence stratigraphy, the presence of multiple décollements, structural segmentation, and syn-tectonic sedimentation influence collision and rifting processes? ii) How does the thermal evolution of rifting and post-rifting stages affect lithosphere-scale orogenesis and vice versa? iii) How does the rifting style (fast vs. slow, magmatic vs. non-magmatic) shape the structural and chemical character of deep orogenic roots and their subsequent activation as extensional zones? iv) What are the implications for georesources accumulation and preservation?
This session seeks to address these questions through a multidisciplinary lens. We invite abstracts that explore the short- and long-term dynamics, as well as the structural geometry and evolution of rift systems and orogens subsequently involved in positive or negative tectonic inversion, using a range of methodologies—including, but not limited to, structural fieldwork, cross-section construction and balancing, 3D structural modelling, seismic analysis, analogue and numerical modeling, rock mechanics, geomorphology, thermochronology, and geophysical investigations.
Patricia Cadenas