Every year brings new observations about earthquakes with a level of detail never reached before. In parallel, observational and computational methods keep improving significantly in seismology, geodesy, and in paleoseismology-geomorphology. Hence, on one hand, the number of earthquakes with well-documented rupture processes and deformation patterns is increasing. On the other hand, the number of studies documenting long time series of past earthquakes, including quantification of past deformation, has also increased. In parallel, the modeling community working on rupture dynamics, including earthquake cycle, is also making significant progress. Thus, this session is the opportunity to bring together these different contributions to foster further collaboration between the different groups all focusing on the same objective of integrating earthquake processes into the earthquake cycle framework. In this session, we welcome contributions documenting earthquake ruptures and processes, both for ancient events or more recent ones, such as the 2023 Turkey sequence, the 2025 Myanmar earthquake, or the 2025 Kamchatka M 8.8 earthquake, from seismological, geodetic, or paleoseismological perspectives. Work combining different approaches is particularly welcome, as are contributions documenting deformation during pre-, post-, or interseismic periods, which are highly relevant to understanding earthquake cycles. Finally, we seek contributions looking at the earthquake cycle from the modeling perspective, both numerical or analogue, especially including approaches that mix data and modeling.
Across the time scales, from earthquakes to earthquake cycle
Co-organized by EMRP1/NH14/SM9