SM6.4 | Advances in Seismic Attenuation, Scattering, and Absorption
EDI
Advances in Seismic Attenuation, Scattering, and Absorption
Co-organized by EMRP1/GMPV9/PS7/TS10
Convener: Mirko BracaleECSECS | Co-conveners: Lian Feng Zhao, Simona GabrielliECSECS, Miriam Christina ReissECSECS, Luca De Siena

Seismic attenuation, involving energy loss through scattering and intrinsic absorption, significantly affects seismic wave propagation. As a fundamental property, attenuation plays a central role in subsurface imaging, investigations of Earth’s deep interior, and seismic exploration of planetary bodies. Quantitative analysis of attenuation enables inference of key material properties, such as composition, fluids, or fractures. A comprehensive understanding of attenuation mechanisms also supports robust source characterization and accurate ground-motion modeling, with important implications for hazard assessment and mitigation. In recent decades, advances in theory, numerical modeling, and data analysis have substantially improved attenuation characterization. High-accuracy 3D simulations now allow realistic modeling of wave propagation through complex structures, while advanced inversion techniques better separate scattering from intrinsic absorption. On the observational side, dense seismic arrays and new sensing technologies provide major, yet still underexploited, opportunities to enhance resolution.
This session will bring together experts to present the latest innovations in seismic attenuation research. We welcome theoretical and applied contributions, from work deepening fundamental understanding to studies showcasing practical applications.
Topics of interest include:
• Theoretical advancements that improve understanding of attenuation processes, including scattering and intrinsic absorption.
• Resolve Earth’s internal structure through analysis of attenuation data.
• Numerical simulations of the relevant equations for seismic wave propagation in heterogeneous media and attenuation.
• Applications to the study and characterization of seismic sources.
• Attenuation studies in seismic hazard and damage assessment, including ground motion models and the effects of shaking on structures and infrastructure.
• Energy dispersion from geological heterogeneities, such as faults, fractures, and variations in rock properties.
• Attenuation as an indicator of energy conversion into heat, with applications to geothermal exploration and volcanic hazard assessment.
• Tomographic imaging that integrates attenuation, scattering, and absorption to investigate Earth’s structure from crust to core.
• Planetary science investigations that use seismic attenuation to probe the internal structure and dynamics of other planetary bodies.

Solicited authors:
Iván Cabrera-Pérez
Please check your login data.